Workshop Feedback

May 9 Focus Group meeting

NOTE The information below is a summary of feedback supplied by the Focus Group members who attended the RSAL workshop of April 27 and 28 The original comments are available through Christine Bennett of AlphaTrac This information was collected by Jerry Henderson Ken Korkia, and John Marler for discussion at the May 9 meeting of the Focus Group

Models

- What are the differences among RESRAD RAGS and the RAC Code?
- Has the RESRAD 6 0 code been adequately benchmarked?
- What air pathway models are available? Are they appropriate to use at Rocky Flats?
- Is the groundwater model in RESRAD appropriate for the conditions at Rocky Flats?
- How well do we understand the uncertainty range on the models resulting RSALs?

Parameters

- What data do we have to support the breathing rate parameter?
- What data do we have to support the soil ingestion parameter?
- What data do we have to support the fruit/vegetable ingestion parameter?
- What K_d value (for plutonium and americium) should be used in those simulations in which the groundwater pathway is turned on?
- What data do we have to support the mass loading parameter? What additional information do we need?

Mass Loading

- Do the wind tunnel data give us enough information on post burn conditions?
- What additional data collection might be needed?
- Does the mass loading parameter account for the effects of microbursts and other turbulent events?

Fire

- Do we have an adequate understanding of the effects of fire on mass loading?
- What additional data collection might be needed?
- What is the probability of a fire burning a contaminated area on a yearly basis?

REVIEW WAVER FER CLASSINGATION OFFICE

ADMIN RECORD

Stakeholder Workshop on Computer Modeling and Parameter Selection for Radionuclide Soil Action Levels at Rocky Flats

April 27 - 28 2001

Westminster Colorado

Workshop Summary

Introduction

In 1996 the Department of Energy (DOE) the Colorado Department of Public Health and Environment (CDPHE) and the Environmental Protection Agency (EPA) established interim radionuclide soil action levels (RSALs) to guide the cleanup at Rocky Flats as part of the Rocky Flats Cleanup Agreement (RFCA) signed by the three agencies. When these RSALs were announced concern arose among members of the stakeholder community that the numbers were too high to provide for the health and safety of current and future residents. In 1998 the Department of Energy agreed to provide funding for an independent assessment of the RSALs

The independent assessment was overseen by a group of community members named the Rocky Flats Radionuclide Soil Action Levels Oversight Panel (RSALOP) In a competitive bidding process the Oversight Panel selected Risk Assessment Corporation (RAC) to conduct the study After 18 months RAC completed its work and recommended RSALs significantly lower than those established by the agencies in 1996

Early in 2000 DOE, CDPHE and EPA established the RSAL Working Group comprised of technical representatives from their agencies to begin a comprehensive review of the RSALs as part of the overall annual review process for RFCA. The Working Group would review all relevant new information including the work performed by RAC to determine what modifications if any needed to be made to the RSALs. To incorporate public participation in this review as well as other issues related to RFCA, the agencies also established the RFCA Focus Group. This group comprised of community members many of whom served as part of the RSALOP meets twice a month to discuss RFCA and RSAL issues.

During the course of these meetings the participants began to discuss the need for a series of stakeholder workshops to address issues related to the RSALs. Concurrently the Rocky Flats Citizens Advisory Board (RFCAB) issued a recommendation to DOE and the regulators requesting that they sponsor a workshop focusing on computer modeling and input parameter selection. DOE agreed to sponsor the workshop and provided funding to RFCAB to organize and host the workshop. An agenda planning committee comprised of community and agency representatives as well as outside subject matter experts developed the agenda and presentations delivered at the workshop.

Goals of the Workshop

The workshop organizers determined that the workshop would have several goals. First, there would be education of the stakeholder community. The organizers would invite a panel of subject matter experts from around the country to present information related to the use of computer models and selection of input parameters for application in the cleanup of radioactively contaminated sites. Second there would be an opportunity for dialogue between the expert panel and members of the RSAL Working Group. It was hoped that the outside experts could bring their relevant knowledge and experience to provide input to the Working Group members. Finally, there would be an opportunity for the workshop attendees to ask questions and gain opinions from both the expert panel and Working Group members on computer modeling and parameter input issues.

The Workshop Agenda

The Workshop Agenda was divided into four parts to meet the three general goals established for the workshop Part I Foundations for Development and Use of Computer Models to Determine Soil Cleanup at Radioactively Contaminated Sites would serve as the education component to lay a foundation of understanding for the workshop attendees Information presented in the initial presentations was reinforced by the examination of two case studies on previous work done related to development of soil action levels using computer models

Part 2 Application of Models for Use at Rocky Flats provided more of a focus on specific modeling issues related to Rocky Flats. After initial presentations by members of the expert panel and the Working Group this part of the workshop allowed for dialogue between members of the two groups as well as provided an educational opportunity for the workshop attendees. The first day of the workshop ended with the group identifying and prioritizing topics they would consider on the second day.

The second day began with Part 3 Key Modeling Issues of Concern at Rocky Flats The discussion of issues identified from the previous day included brief presentations by some members of the expert panel and the Working Group Again to meet the goals of the workshop there was an extended opportunity for dialogue between the two groups as well as opportunity for the workshop attendees to join the conversation with their questions and comments

The workshop concluded with Part 4 Where do we go from here? In this part each of the expert panel members and the Working Group representatives presented brief comments outlining lessons learned next steps and other impressions of the workshop. Workshop attendees also provided their statements

The Workshop Presenters

The invited panel of experts and members of the Working Group who provided presentations during the workshop included the following individuals

Expert Panel Members

Dr Kathryn Higley: A certified health physicist, Dr Higley currently is an Associate Professor in the Department of Nuclear Engineering at Oregon State University. She holds a Ph D in Radiological Health Sciences from Colorado State University. Her fields of interest include human health and ecological risk assessment, environmental pathways analysis environmental radiation monitoring, radiochemistry and environmental regulations. Dr Higley performed risk assessment modeling at the Johnston Atoll in the South Pacific, a Cold War missile launch site for atmospheric testing of nuclear weapons. This site has plutonium soil contamination from various mishaps. including a failed missile launch, and faces cleanup decisions similar to Rocky Flats.

Charley Yu Dr Yu is the Program Manager and Principal Investigator for the RESRAD Development Program in the Environmental Assessment Division of Argonne National Laboratory He holds a Ph D in Nuclear Engineering from Pennsylvania State University Dr Yu also is a certified health physicist and has been invited to present numerous seminars and workshops internationally on the topics of soil cleanup criteria, radioactive waste disposal multiple pathway analysis and radiological risk assessment.

John Till Dr Till is the President of Risk Assessment Corporation and is quite familiar to the Rocky Flats community having conducted the independent assessment of the radionuclide soil action levels for Rocky Flats beginning in 1998. His firm specializes in conducting independent research concerning environmental risk analysis for radionuclides and chemicals in the environment. In 1997 he was elected a member of the International Commission on Radiological Protection (ICRP). He also serves as a member of the U.S. National Council on Radiation Protection and Measurements (NCRP). Dr Till received his Ph.D. from Georgia Institute of Technology.

Art Rood Mr Rood received his Masters Degree in Health Physics from Colorado State University. His work has been primarily in the field of environmental contaminant transport modeling, and dose and risk assessment. Mr Rood has completed studies at numerous DOE facilities including Rocky Flats. Idaho National Engineering and Environmental Laboratory the Hanford Reservation and most recently the Los Alamos National Laboratory studying atmospheric releases following the May 2000 fire. Currently he is working on a user friendly interface that will allow members of the public to receive a cancer risk estimate based on their own exposure history to DOE sites at Hanford and Rocky Flats.

Kathleen Meyer: Dr Meyer's areas of expertise include cancer research historic evaluation of past radionuclide and chemical releases and risk assessments of radionuclides and chemicals. She received a Ph D in Radiological Health Sciences from Colorado State University. She has examined past releases from numerous DOE facilities including Fernald in Ohio. Savannah River in South Carolina. Rocky Flats. and the Idaho National Engineering and Environmental Laboratory.

RSAL Working Group Representatives.

Bob Nininger: Dr Nininger holds a Ph D in Physics from the University of North Carolina. He currently works for the Rocky Flats site contractor. Kaiser Hill as head of the Environmental Media Management Group. A former academician. Dr. Nininger once taught physics and served as an Assistant Dean. His research career has included work at USEPA in the Aerosol Research Branch and Special Techniques Branch of the Environmental Sciences Research Laboratory. He also worked at Los Alamos National Laboratory where his duties included the design of special air monitoring research projects and the oversight of proprietary air model development and modeling services.

James Benetti Mr Benetti has spent the past 19 years working as a health physicist for state and federal government agencies. Currently he works for EPA in Las Vegas where his principal responsibilities have included providing technical support to Superfund in implementing the provisions of CERCLA and RCRA at radiologically contaminated sites. He worked extensively on the WIPP certification process. Mr Benetti holds a Masters Degree in physics from the University of Wisconsin Madison.

Several additional individuals provided significant input during the workshop. They were <u>Dr. Helen Grogan</u>, a member of the Risk Assessment Corporation team and S Y. <u>Chen</u> with Argonne National Laboratory. Additional participants from the RSAL Working Group included <u>Susan Griffin</u> and <u>Tim Rehder</u> with EPA, <u>John Rampe</u> with DOE; and <u>Steve Gunderson</u> with CDPHE.

A Summary of the Workshop

The following pages contain a summary of the workshop Individual summaries are provided for each of the four workshop parts. In most instances, summaries of the discussions are without attribution unless it was judged necessary for better comprehension of the comment or question and response. For those desiring a more complete record of the workshop beyond this summary, both an audio and videotape are available.

PART I Foundations for Development and Use of Computer Models to Determine Soil Cleanup at Radioactively Contaminated Sites

After opening remarks presented by John Rampe (DOE RFFO) the morning session began with six presentations on the fundamentals of computer models and their application to contaminated sites. The first five presentations covered the basics of risk analysis history of modeling, modeling concepts and the development of the RESRAD model. The participants then engaged in an open discussion first among the panelists, then with the audience. Next, Dr John Till (RAC) and Dr. Kathryn Higley (OSU) presented case studies using Rocky Flats and the Johnston Atoll. Finally the morning session wrapped up with another open discussion.

<u>Presentation I. Basics of Risk Analysis to Determine Cleanup Levels</u> John Till Risk Assessment Corporation

Dr John Till gave the first presentation on the basics of risk analysis. Using dose to assess risk, Dr Till provided his definition of dose

Dose = $(S \times T \times E \times DF)$ uvcpm where

S = source term (RSAL)

T = transport of contaminants

E = exposure scenarios

DF = does conversion factors

u = uncertainty v = validation

c = communication of results

p = public participation

m = management and decision making

Although risk is not the approach that will be discussed in this workshop for determining soil action levels for radiological contaminants. Dr. Till suggested that it should be. His definition of risk differs slightly from dose

Risk = $(S \times T \times E \times DF \times RF)$ uvcpm where

RF = risk conversion factors

In 1999 the RAC study looked at dose then converted to risk for comparison

Finally Dr Till discussed the uncertainty of the final soil action levels and some parameters such as transport and exposure scenarios

He concluded by recommending that the working group develop soil action levels in an unbiased and independent manner without preconceived ideas of what the goal number should

be He also suggested that best science should be used to back up every decision that might influence the outcome of the soil action level

Presentation 2 History of Model Development: Kathryn Higley Oregon State University

Dr Kathryn Higley gave the second presentation on the history of model development. She provided an introduction to scientific models and explained their different applications in radiological assessments such as for screening, compliance performance assessment, and/or scientific information. There are several rationales for using models to determine soil action levels. First, the models provide an alternative method to the risk assessment for evaluating dose. Second models are the best and least expensive alternative to sampling. Finally models allow for predictive "what if" forecasting. The purpose of the computer model is to quantify the relationship between the contaminant release contaminant transfer or pathway and potential impact to humans and the environment. Computer models can be simple or complex, depending on the specific needs. The more data that is input into the model the more complex the model becomes. Simple models tend to overestimate the risk, which makes them suitable for screening purposes but impractical for determining cleanup levels. Regulations may specify a specific model to demonstrate compliance. This provides a common basis for regulators to evaluate multiple sites. This also simplifies the regulatory analysis. Unfortunately regulatory prescribed models do not always address site specific considerations.

Another type of model can be used to analyze dose. These more sophisticated models can reconstruct dose retrospectively provide a quantitative evaluation of dose, and/or provide site specificity. Examples include GENII and PATHWAY

Models can be used to assess potential future performance and the potential for release RESRAD is an example of a performance assessment model

In order to select the appropriate model the reviewer must carefully consider the supporting documentation quality control verification validation and general acceptance and use. A screening model is selected as a screening tool during the initial stage of the problem analysis. Compliance models are selected when regulations prescribe them Sophisticated models are best for sites with potentially significant impacts

In conclusion the simplest models are advantageous since these models are conceptually straightforward results are easy to verify and they provide a conservative estimate of dose

Presentation 3 Scenarios, Parameters, and Models Jim Benetti EPA

Mr James Benetti gave the third presentation on modeling concepts scenarios parameters and models. He emphasized that the factors that impact the RSAL lie outside the particular computer model such as the scenario assumptions and the parameter choices. Therefore, the distinction between the model concepts is important to understand. Scenarios are assumptions about human behavior and natural events for future site use. These primarily involve assumptions about behavioral and metabolic parameters. Parameters are the bridge between scenarios and the model. Parameters represent the features of the scenario which are

presented to the model as numbers. They are conveniently categorized as physical behavioral and metabolic. Sensitive parameters strongly affect the calculation results. The model is a set of formulas or number crunchers. The formulas approximate reality. The model takes input numbers or distributions performs calculations in prescribed ways, and displays output in prescribed ways. In order to have confidence in the model, the results must be compared to reality and quality assurance documentation must be reviewed. The quality assurance aspects of the model must be evaluated against the appropriate standard such as NQA 2.7. Validation for long term risk modeling is rarely possible. Therefore, adequate verification testing, benchmarking, and configuration control must suffice.

Sensitive parameters may include residence times (behavioral) soil ingestion rates (metabolic) mass loading (physical) and/or gut uptake fraction (dosimetric)

Presentation 4 Development and Application of the RESRAD Model Charley Yu Argonne National Laboratory

The fourth presentation by Charley Yu covered the basics of the RESRAD model RESRAD is a computer model developed by DOE, to calculate site specific residual radioactive material guidelines or action levels (RSALs) RESRAD calculates the dose and excess lifetime cancer risks to maximally exposed individuals or members of a critical population group. The RESRAD model was first developed in the early 1980 s and developed into the first draft code for IBM mainframes in 1987. The RESRAD model has been further developed and improved since that time and is cited in DOE Order 5400.5 and Title 10 of the Code of Federal Regulations. Part 834. RESRAD has a strong record of application. In addition to DOE, the Nuclear Regulatory Commission (NRC) and the EPA also support RESRAD. RESRAD has an international and broad national customer base. To date, Argonne National Laboratory has conducted 120 workshops on RESRAD.

RESRAD has six codes RESRAD Offsite RESRAD Build RESRAD Chem RESRAD Baseline RESRAD Ecorisk, and RESRAD Recycle The major features of RESRAD include multimedia pathway analysis multiple exposure scenarios and sensitivity/uncertainty analysis to identify key parameters RESRAD is easy to install easy to use and has numerous technical support manuals

Dr Charley Yu used the multiple scenario analysis to demonstrate the RESRAD model. He showed how to simulate current and plausible future use scenarios. One or more exposure pathways can be added or suppressed. Occupancy factors and consumption parameters may be tailored according to the scenario being simulated. Typical scenarios include but are not limited to industrial recreational residential and subsistence farming.

Next, Dr Yu explained the quality assurance/quality control process verification and validation and results from a validation study. He also referenced six benchmarking studies that were conducted between 1990 and 1999 and 14 technical support documents. More information is available on the RESRAD website. http://web ead anl gov/resrad

Discussion of the Presentations

Discussion between the expert panel and the Working Group

• Question What are the benefits of benchmarking? Response Benchmarking is important to detect simple errors in the code. However, different results don't necessarily indicate that the code itself is the one in error.

Open question and comment period

- Comment: The terms model and code should be differentiated Response. RESRAD is a code and benchmarking looks at pieces of the code. A code is a combination of a number of different models.
- Question Are scenarios also validated? Response. Scenarios used for historical purposes can be validated (i.e. interviews with previous employees). Validation for future scenarios is difficult for behavioral parameters. The EPA applies historical and current data to future scenarios.
- Question Has the benchmark testing of RESRAD 6 0 version been completed?

 Response Yes the benchmarking test was done The deterministic part of RESRAD 6 0 is the same as RESRAD 5 82. The modified probabilistic portion or the uncertainty part, has been tested by hand calculations.
- Question How valid are the previous RSAL calculations? Response. The reason the regulators are reevaluating the RSAL is because some people question the parameters that were used the first time. Sensitive parameters vary the results significantly. Don't let us mislead you that we can come up with numbers to two or three significant figures. We are not that good.
- Question Were various changes to the RESRAD code made over the years significant?

 Response The RESRAD website lists all the modifications to different codes. The inhalation area factor and the external dose for soil contamination have been updated based on recent scientific information. The future changes will include updating the EPA risk coefficients when they are published.
- Question Does RESRAD consider health effects other than cancer? Response Cancer is the only health effect considered Miscarriages for example are not considered. These other health effects are caused by very high levels of exposure not the low levels addressed by RESRAD.
- Question Was RESRAD 6 0 verified using NQA 2 7? Response. NQA 2 7 was followed
 when the code was developed However several specific and equivalent quality
 assurance guidance documents were used to verify RESRAD 6 0 NQA 2 7 is more
 general
- Question How does RESRAD consider the timing factor of the dose calculation?

 Response RESRAD calculates an annual dose but will calculate to a specific time period (e.g. two months) The code will integrate that dose over a year for the calculation
- <u>Comment</u>: Validation is impossible <u>Response</u> Validation isn't perfect. You can't recreate the real world with mathematical equations and go out a check it. It is impossible to validate models but applications of models can be validated
- <u>Comment</u>: RESRAD should be modified to consider sensitive individuals <u>Response</u>
 First, from the risk perspective risk is a component of exposure and toxicity Since the

exposure varies by person (i e people drink different amounts of water live different amounts of time etc.) the point estimate approach calculations are based on the reasonably maximum exposure. In a probabilistic determination, the entire spectrum is considered. For toxicity, the risk assessment considers other health effects besides cancer effects whichever one causes effects at the lowest level in the most sensitive individual. Thus the model considers individuals that receive the highest exposure and the greatest effects.

<u>Presentation 5. Case Study: Application of Risk Analysis at Rocky Flats</u>: John Till Risk Assessment Corporation

Dr John Till presented a case study on Rocky Flats In 1999 Dr Till's firm Risk Assessment Corporation (RAC) was hired to review DOE's RSAL calculations which were finalized the previous year RAC applied the same version of RESRAD Model 5 82 as DOE. However RAC input different parameters. One sensitive parameter particulate resuspension dramatically impacted the RSAL result. RAC used available environmental data and considered resuspension in the case of a significant wildfire. RAC also applied the most conservative scenario the resident rancher to their calculations. The RAC analysis did not consider costs health and safety risks institutional controls risks associated with prescribed dose limits background radiation and community values.

Presentation 6 Case Study. Evaluation of Potential Human Risks at Johnston Atoli from the Presence of Plutonium Contamination Kathryn Higley Oregon State University (OSU)

Dr Kathryn Higley presented a case history of the Johnston Atoll cleanup Since 1934 Johnston Atoll has been used by the U.S. Military as an airbase. Nuclear weapons testing occurred during the 1950s and 60s. In 1962 four nuclear missile launches failed causing plutonium contamination of Johnston Island. Although some spot cleaning was performed between 1964 and 1978 actual cleanup did not begin until the 1980s. Today the site remains relatively barren except for approximately 1 200 military employees.

Oregon State University participated in the cleanup by providing technical assistance on site characterization risk assessment, laboratory analysis instrument modeling, and statistical sampling. The 1998 risk assessment focused on the probable pathways of exposure (terrestrial exposures only) within a 1 000 year timeframe. The geological features of the radiological control area consisted mainly of highly permeable crushed coral and sediments. The contaminants of concern included plutonium and americium. The risk assessors selected four potential anticipated future users for their assessment: the fish and wildlife researcher, the Johnston Atoll resident, the eco tourist, and the homesteader. Dr. Higley described the future users as follows.

• Fish and Wildlife Worker The fish and wildlife worker would reside on Johnston Atoll for ten years. This hypothetical worker would hike bird watch dig test pits to examine burrows and sample vegetation in the radiation control area. The exposure pathways would include inhalation inadvertent ingestion and external radiation.

- Johnston Atoll Resident. The resident, probably a military employee, would reside on the island for ten years and work in the radiological control area. The resident's exposure routes would include inhalation inadvertent ingestion external radiation, and limited food consumption from patio gardens (potted plants). The soil ingestion pathway did not include root uptakes foliar deposition or lettuce and strawberries since these exposure routes were considered unlikely.
- Eco-Tourist. The eco tourist would reside on the island for two weeks a year and return in five years. The eco tourist would spend time bird watching on the reserve, which includes non radiological areas. The primary exposure pathways for the eco-tourist would be inhalation inadvertent ingestion and external radiation.
- Homesteader: The homesteader is a hypothetical resident of the site that would move in after site abandonment. This future user would reside on the island for 70 years and live year round in the radiological control area. Since the homesteader would grow plants ingestion would be the primary exposure pathway inhalation and external radiation would also be pathways.

Dr Higley next explained how the RESRAD computer model was applied to the Johnston Atoll risk assessment. For each scenario the estimated maximum total excess lifetime risk from exposure to radionuclides at I pCi/g soil concentration was evaluated. The homesteader displayed the greatest cancer risk. Dr Higley then showed a graphic illustration of the sources of that risk for each future user in percentages. The eco tourist would receive the greatest exposure from the external exposure. The fish and wildlife worker resident, and homesteader would receive the greatest exposure from ingestion. However, among the three scenarios the significant ingestion pathways differed by soil plant, or meat ingestion.

RESRAD was then used to calculate dose as follows

Eco Tourist = 0.01 mrem/y per 1 pCi/g
Resident = 0.3 mrem/y per 1 pCi/g
Fish & Wildlife = 0.3 mrem/y per 1 pCi/g
Homesteader = 0.5 mrem/y per 1 pCi/g

Finally the risk assessment concluded that the homesteader had the greatest risk and that the exposure pathways differed for each scenario

Discussion of the Presentations

Discussion between the expert panel and the Working Group

- Question What dose conversion factors did Oregon State University (OSU) use for the Johnston Atoll risk assessment (i.e. ICRP 30 or 60)? Response. ICRP 30
- Question What solubility class did OSU assume for dose conversion factors for plutonium? Response OSU assumed the plutonium was an oxide based on the way the plutonium was released through the detonation
- <u>Comment</u>: Rocky Flats plans to use RESRAD off the shelf The Working Group plans to apply the RAC approach using RESRAD 6.0 for comparison <u>Response</u>. The participants of this workshop should discuss the value of applying a model off the

mile in the second

M 23

shelf The best model should be selected and then modified so that the best science can be incorporated. One example of the difficulty the Working Group will have trying to reproduce RAC s work using the model off the shelf is the application of the fire. Outside of the fire the results will be similar.

Open question and comment period

- Comment: Research needs to be done on mass loading and air resuspension Response
 These are critical parameters and need additional research particularly the effects of a
 major fire. The average wind speed across the site is not a difficult determination. That
 number is sound. Mass loading will be addressed by the wind tunnel research. Other
 data will also be considered.
- Question At Rocky Flats and Johnston Atoll it appears the area of contamination is limited. How does RESRAD deal with the geographic limitation? After cleanup what are you really left with? In the practical world, the area that might impact future users would be the area not cleaned up Response. RESRAD does allow you to consider the physical size called area factor. The area factor and the average annual wind speed did not impact the RAC calculation.
- Comment: RESRAD 6 0 should be modified to consider fires since it is an issue at all DOE sites Response RAC did not modify code. They came up with a number outside the code and plugged it in
- Question How does RESRAD consider temporal short term events? Response Acute effect is not an issue for residual contamination even with fires
- Question What is the difference between resuspension and mass loading? Response Resuspension is the amount of contaminant that is suspended in the air from something in the air that has been previously deposited. Mass loading is a way of getting at that value. Mass loading is the soil concentration in air and multiple it by soil concentration and assume that proportionality then you will come up with an air concentration.
- Question It appears the working group is using mass loading and RAC used resuspension. How do the two approaches differ? Response. Resuspension is also used to describe the process of how material gets into the air from soil or other sources. Mass loading, as used by RESRAD is the air concentration of dust. Implicit in that input parameter is the assumption that there is an amount of radionuclide in that source area. The wind tunnel experiments provide site specific resuspension data.

PART 2 Application of Models for Use at Rocky Flats

The second part of the workshop began with a demonstration of the RESRAD 6.0 model followed by three presentations applying that model. Those presentations discussed how RESRAD 6.0 specifically fits into conditions at Rocky Flats. Following the presentations time was set aside to discuss what had been presented. Finally, the group reviewed the key modeling issues of concern that were identified throughout the day checked to see if there were other issues to be added to the list, and identified which issues they would like to focus

Demonstration of the RESRAD 6.0 Model Charley Yu Argonne National Laboratory

on in Part 3

Dr Yu presented a demonstration of the RESRAD 6.0 computer modeling software and discussed briefly the deterministic code. However, he focused primarily on the probabilistic code which allows the input of parameter distributions. Software features include the capacity to change concentrations within a time period calculate risk over a specific time period determine individual pathway peaks for a specific dose time integrated probabilistic risk, input based on specific radionuclide concentrations or daughter nuclides performing uncertainty analyses and input of data based on differing soil types. The software has default values that Argonne built in when developing RESRAD. Those values are easily changed based on site specific needs. Dr. Yu demonstrated on screen how to move through the program software screens input individual values and parameters and read the results produced by the software. He stated that RESRAD has a powerful output analysis capability and can produce a great deal of information in both graphic and text format.

Presentation 1. Consideration of Specific Environmental Conditions, Exposure Pathways, and Uncertainties at Rocky Flats: John Till Risk Assessment Corporation

In the morning session Part | Dr Till presented background information on RAC s independent review of the soil action levels at Rocky Flats He continued the discussion with this presentation on the specific environmental conditions exposure pathways and uncertainty analysis his team applied during their study. Dr. Till first stated that the original scenarios used in the calculation by DOE, EPA, and CDPHE used numbers for a resident that were not significantly different from the numbers used by RAC for a resident rancher For the inhalation calculation the resident rancher was placed on the east side of the 903 Pad area, where the highest dose most likely would occur The calculations were normalized to Pu 239 and Pu 240 Although there is not a uniform distribution across the site it is probably representative RAC took into account both the probability and the impact of a fire. An analysis of the pathways involved in the soil action level developed by RAC (35 pCi/g) for scenario 1 (a resident rancher) showed that food ingestion contributed about 11% to the overall dose soil ingestion contributed about 13% external exposure was less than 1% and inhalation contributed around 76% of the dose. RAC's scenario 2 for a 10-year-old child of a rancher doesn't change the soil action level significantly However at 80 pCi/g, the contribution of dose from the different pathways to the child shows that plant and soil ingestion doses increased and inhalation exposure is dramatically less RAC's scenario 3 for an infant, was not much different than the

scenario for a child Dr Till concluded by restating that the 35 pCi/g soil action level that RAC derived based on the methodology used was agreed to by the Oversight Panel during the independent study

Presentation 2 How RAC Addressed Environmental Conditions at Rocky Flats in Determining Soil Action Levels Art Rood Risk Assessment Corporation

Mr Rood explained that the first step in modeling a site is to consider the specific characteristics of the site that govern behavior of contaminant movement in the environment, such as geological and meteorological contamination conditions then evaluate the data available. This dictates what kind of model can be justified. The next step is to construct a conceptual site model of contaminant transport in the environment. Then the conceptual site model is translated into a mathematical model. The last step is the selection of a computer code. A computer code should not be selected as a first step with the expectation that it can be forced to work within a particular site. RAC used RESRAD 5.82 and controlled it by a Perl script, a scripting language that can be used to control the inputs and outputs to RESRAD RAC performed a Monte Carlo simulation although the Monte Carlo version of RESRAD was not available at the time this work was done. Air concentrations were calculated external to RESRAD and the probability of a wildfire was considered. The model output was the probability of exceeding the dose limit for a given plutonium soil concentration. Mr Rood briefly discussed the flowchart steps RAC used to process its calculations through the RESRAD software.

The major difference in modeling was RAC s treatment of the air concentration versus soil concentrations RESRAD assumes a uniformly contaminated site which is not the case at Rocky Flats The model was calibrated to plutonium in air measurements at 34 air monitoring stations surround the site. Also used in the model was a wind speed dependent resuspension model and meteorological data taken at the site. A separate model was used to compute the probability of a fire That model estimated the size and location of a fire onsite. The fire had the net effect of increasing the amount of resuspension proportional to the burn area of the fire Dose conversion factors used were those derived in ICRP 67 (ingestion) and ICRP 71 (inhalation) RAC felt that a soil action level would not work very well if exposure occurred from contamination not located where the receptor is situated. A situation like this would occur in an inhalation pathway where plutonium is transported in air from areas of high contamination to locations of low contamination where the receptor may be residing. So instead of calculating an RSAL RAC proposed that a remediation strategy be developed which considers the current contamination levels at the site and estimates the dose at all potential receptor locations If the dose exceeds the dose limit at selected receptor locations then you simulate a remediation. This process is then repeated until the dose limit is achieved at all locations onsite

Presentation 3 Application of the RESRAD 6.0 Model to the Specific Conditions and Exposure Pathways at Rocky Flats Bob Nininger Rocky Flats RSAL Working Group

Dr Nininger discussed how the RSAL Working Group considered modeling considerations through RESRAD 60. He stated that the significant questions are more about putting the

parameters together and placing the parameters into the model itself such as representative scenarios appropriate parameters and conditions and representative model results representing the range of exposures that might exist. The exposure scenarios being looked at by the Working Group are a wildlife refuge worker an open space worker an office worker and a rural resident. Those scenarios suggest that the following contaminant pathways be modeled soil ingestion plant ingestion external radiation inhalation and water. The inhalation pathway requires a careful definition of scenarios and the water pathway requires a greater understanding of the chemistry involved It is important to consider sensitive pathways such as the root depth of plants contaminant depth wind speed anticipated air concentrations and exposure factors like the time spent indoors and inhalation rates. More time is spent reviewing and looking at the sensitive pathways by assigned point values. For instance, if a parameter is narrowly defined it will receive a singular point value. For parameters that are sensitive where the input change makes a big difference in the dose output, the distributions are reviewed more closely Dr Nininger explained a couple of case studies reviewed by the Working Group one being the assignment of distribution functions and the second being air mass loading. The Working Group is having difficulties coming up with a good representation of a mass loading that takes into account factors other than normal operating conditions. Less common events such as a fire are important to consider However a probabilistic approach to the fire scenario is difficult to determine

Baseline mass loading includes impacts from large construction projects vehicle traffic deer herds and impacts from area growth. Onsite meteorological data span more than 35 years and include precipitation and wind data. To set the baseline for coming up with a mass loading factor site and statewide data is used as well as precipitation factors. Front Range fire data, and wind tunnel data. The resulting mass loading is a statistical distribution, which then can be input to RESRAD. There are many challenges associated with the parameters such as whether the parameters are in sync with the requirements of RESRAD. For instance, an indoor time fraction is not the fraction of time spent indoors onsite while working, but the fraction of time spent indoors onsite on a 24 hour basis. Also more unrealistically, mass loading as it represents an area source must consider a disturbance as distributed over the entire field of influence rather than just the contaminated area. Thus RESRAD will scale that mass loading by the area factor, which comes from the area that is really disturbed by the fire or other identified disturbance. Dr. Nininger noted that he has more information on sensitivity analysis that can be presented at this workshop.

Discussion of the Presentations

Discussion between the expert panel and the Working Group

• Question (John Till) Explain how you will use RESRAD with the fire scenario Response (Bob Nininger) Small fires onsite are not uncommon the assumption is that it may be once per year. The probability of a fire in a contaminated area presents more of a difficulty. There is an area of approximately 300 acres that encompasses all contamination above 10 pCi/g. The probability of a fire occurring within that 300 acres within the 6 500 acres of the site is a matter of a simple ratio. There is roughly a 5% probability of a fire occurring in the 300-acre contaminated area. Using resuspension measured in the wind tunnel it is possible to derive mass loading multipliers for a spring

- fire and a fall fire Data is also available for the probability of a fire occurring in either the spring or fall From that information a hypothetical mass loading distribution can be generated
- Question (Kathleen Meyer) You said that distributions would be developed for some exposure parameters with high variability. Could you provide examples of some of those? Response They are primarily the ones listed in the handout. [Refer to Attachment I at the back of this summary] The sensitivity of parameters is pathway specific and isotope specific. Parameters are ranked in order by sensitivity coefficient, which is the change in dose relative to the change in a parameter over a given range.
- Question (Charley Yu) What parameters were assigned probability distributions in the RAC Study? Response (Art Rood) A limited set was reviewed. Uncertainty was not considered in the exposure scenario such as the person's behavior or physical attributes. That may be in conflict with the approach of the regulatory agencies. For the purpose of the RAC Study uncertainty refers to the precision with which we can estimate the concentration of contaminants in environmental media. This is measurable Behavioral attributes are not measurable because the receptor is only a hypothetical individual. RAC came to the conclusion that mixing the two tends to confuse what the uncertainty associated with an output distribution really represents. In RAC's case, we know exactly what it represents our ability to measure contaminants in the environment. When you combine this with the behavior of a hypothetical individual. I'm not sure what the uncertainty estimate really represents. The only parameters considered for probabilistic treatment in the analysis were air concentration soil concentration root uptake factors. K_d and all other parameters that govern transport.
- Question (Jim Benetti) When you located a receptor east of the 903 Pad was that the point of maximum exposure? Response (Art Rood) Yes the most conservative value was for a receptor located a little farther east of the 903 Pad. Soil action level is sensitive to the soil concentration to dose ratio. The soil concentration at that location is very low but the dose is not proportionally low. Consequently, the soil concentration to dose ratio is maximized there. The area was chosen based on numerous simulations, and some intuition.
- Question (Charlie Yu) How do you determine the length of time of the fire? Response
 (Art Rood) The larger the burn area the longer the fire s duration was considered to
 be The duration of the fire was assumed to be relatively small relative to one year so
 we did not look at the actual release during a fire
- Question (Bob Nininger) Did you consider the episodic nature of resuspension?
 Response (Art Rood) Yes we accounted for fluctuations in wind speed. We calibrated our air model using five years of wind speed and air sampler data for the site. Basically it is an empirical model incorporating many complex processes that are not well characterized. The real benefit of an empirical model is that it simplifies these complex processes.
- Question (Jeremy Karpatkin, Jim Benetti) What was RAC's modification to RESRAD if any to enable the program to do something different with air resuspension? I understand that RESRAD accepts slightly different input parameters than those used in RAC's empirical model. How did you get them into a form that RESRAD accepts? Response (Art Rood) RAC did not modify RESRAD. The RESRAD 5 82 code remained intact, unmodified and was used in the executable version that was received.

- from Argonne We did obtain the source code to see how to get at the input files and operated on the command line rather than Windows RAC did work with the input so RESRAD would calculate the concentrations RAC wanted Basically we back calculated a mass loading factor to get the desired air concentration
- Question (Charley Yu) If I understand it correctly RAC s empirical air model correlates known soil contamination at Rocky Flats with a mass loading factor for input to the RESRAD code. If there were more contamination present in the soil than has previously been identified what effect would this have on RAC s calculations?
 Response RAC used every piece of data available to extract the correlation between concentration in soil and air. If additional data is now available, it could be performed again.

Open question and comment period

- Comment: Changes in ICRP regarding the dose conversion factors play a large part in the difference in cleanup strategies and decisions at different sites Response (Kathryn Higley). Yes you re right. These factors may change by a factor of 10 or more, and this definitely affects the cleanup level. Another issue is what standard should be used to back out an unacceptable soil level a dose standard or a risk standard? The choice of standard may change acceptable soil contamination level by a factor of 2 or more. Second Response (John Till). That is exactly what I meant earlier by the term robustness of the RSAL. How do we make a decision today that is going to endure? Scientists are accustomed to plugging in a single number for dose conversion factors even though we all recognize that these factors are uncertain. This is an area where science needs to focus attention in the future. For now, I don't know the best way to solve this dilemma. One solution might be to use the most conservative factor for each pathway that has been published over the years. That would be one way to take this uncertainty into account.
- Question Groundwater is not being considered as a pathway in the scenarios currently being considered. What needs to be done in RESRAD to address the consideration of groundwater as a pathway? Response (John Till) RAC recognized the potential importance of groundwater as a pathway but it was beyond the scope of RAC s work to consider it. The way RAC took groundwater into account, it did not make much impact on the soil action level. RESRAD cannot handle surface water or groundwater as it should be handled. Groundwater needs to be considered very thoroughly outside of the soil action levels.
- Comment. The probability of a fire is not so difficult to determine. A one in a thousand expectation for a fire assumed by RAC seems out of line. It is reasonable to assume at least one intense fire and many low grade fires within the lifetime of the receptor. Response (John Till). The issue of the probability of fire bothered me even as we were doing the study. By the time we decided to model the fire, we had only 2 months left in which to complete the work. That doesn't mean it isn't done right. We simply didn't have all of the data necessary to come up with a reasonable probability for the fire. In terms of complying with an annual dose limit, I believe you have to assume the probability of fire equals one.

What are the Key Modeling Issues of Concern Related to Rocky Flats?

At the end of Part 2 members of the expert panel the Working Group members and all workshop attendees worked together to identify the key modeling issues of concern related to Rocky Flats. This was done in order to prioritize issues that would be discussed the next day in Part 3 of the workshop. In the initial round of discussions the group as a whole identified the following issues.

Sensitivity analysis
Risk assessment using RAGS method
Wind tunnel
Uncertainty in scenario parameters
Uncertainty in dose conversion factors
Uncertainty in breathing rates
Comparison of key parameters

Discussion of RAC s soil action level
Comparison of model performance
Sensitive parameter values
Risk versus dose
Differential sensitivity to radiation
Scenario validation
Non linearity in calculations

First, some related issues were grouped together. Next, the facilitator led the group in a voting session to prioritize the top issues that would lay the foundation for Part 3. Key Modeling Issues of Concern at Rocky Flats. Each individual present was given a total of three votes to cast for their top issues. Four topics received the most votes from the group. Individuals on the expert panel and with the RSAL Working Group were asked to either give a presentation the next day or to come prepared to discuss the following four issues.

- Risk versus dose Is one method for deriving soil cleanup levels preferable from a scientific standpoint, than the other? What are the relative uncertainties between the two methods? How is risk calculated according to EPA's Risk Assessment Guidance for Superfund (RAGS)? How does the RESRAD program handle calculation of risk?
- <u>Uncertainty</u> How do scientists account for uncertainty as related to scenario parameters (particularly breathing rate) and dose conversion factors? Why is it important to distinguish between uncertainty and natural variability? What implications does cumulative uncertainty have for calculation of the RSALs?
- <u>Sensitive parameters</u> How is sensitivity analysis performed in order to identify sensitive parameters? What approach is being followed by the Working Group to choose values or distributions for sensitive parameters and the mass loading parameter in particular? To what extent will the wind tunnel studies conducted at Rocky Flats shed light on the mass loading parameter?

Comparison between RESRAD 60 and RAC s work.

18

Part 3 Key Modeling Issues of Concern at Rocky Flats

Part 3 focused on key issues deemed important by vote of the group. As envisioned by the workshop planning committee this was really the heart of the workshop. On each of the key issues the Working Group shared its approach with the group and invited comments and criticisms from the panel of experts. Afterward the general audience was allowed to ask questions. The issues given high priority were as follows.

- Risk versus dose
- Uncertainties
- Sensitive parameters
- Comparing the RESRAD 6 0 model to RAC's work

Issue! Risk versus Dose

Presentation Risk Assessment Using RAGS (Risk Assessment Guidance for Superfund) Methodology Susan Griffin EPA

Dr Susan Griffin toxicologist with EPA Region VIII gave a presentation entitled Development of Risk Based Soil Action Levels at Rocky Flats Just as the RESRAD model has an extensive pedigree EPA has employed the same risk-assessment framework for over a decade. Originally developed in 1983 by the National Academy of Sciences EPA adopted RAGS methodology as policy six years later. Under this approach a site conceptual model is developed to describe the pathways by which human beings may reasonably be expected to come in contact with environmental contaminants. Pathways are categorized as being significant, insignificant or incomplete. This is where the risk assessor relies on stakeholder input in order to understand current and future uses of the site. For each pathway identified in the site conceptual model there is a standard RAGS equation simple enough to be performed using a spreadsheet. The intent is to make the underlying assumptions transparent, and the overall approach consistent from site to site. That is not to say one size fits all site specific values should be plugged into the risk equations whenever possible.

When RAGS methodology is used to derive soil action levels the end result is a quantitative estimate of the lifetime cancer risk attributable to various levels of contamination in the environment. Deciding what level of risk to future users will be deemed acceptable is ultimately the role of the risk manager not the risk assessor. EPA guidance says that cleanup action is generally not warranted unless the cumulative cancer risk from all carcinogens is greater than one in 10 000 (10⁻⁴)

Presentation Risk vs. Dose as it relates to RESRAD Charley Yu Argonne

Dr Charley Yu demonstrated some features of RESRAD that pertain to calculating risk. The dose conversion factor library within RESRAD can be changed by inputting risk factor values. The risk report generated after a RESRAD run correlates intake quantities of radionuclides to

an estimation of risk. The desired output is available by pathway and in total According to Dr Yu the RESRAD code calculates risk in a manner consistent with EPA RAGS methodology

Discussion of the Presentations

Discussion between the expert panel and the Working Group

- Question How do you determine the significance of a pathway? Response. An insignificant pathway is one in which the exposure is so small that it is overshadowed by other pathways. This determination can be made through back-of the-envelope screening calculations combined with professional judgment. If a particular pathway is incomplete for a given scenario then the lifestyle of the receptor associated with that scenario is such that no route of exposure exists.
- Question In RESRAD can dose conversion factors and risk factors be entered as probability distributions? Response Yes they can
- Question How do the screening level calculations consider environmental transport and ingrowth of radionuclides? Response The basic RAGS equations do not account for either In the case of RFETS this is not deemed to be a problem since the highest exposures are believed to occur at Year Zero
- Question What about interactions or synergies between contaminants? Presenter's
 Response We do not know enough about these complex processes so risks from
 different contaminants are assumed to be additive. This is believed to be a conservative
 assumption.
- Question How does the Working Group take stakeholder input and independence into account? Response The objective of the Working Group is to generate scientifically defensible RSALs Stakeholders are allowed to attend Working Group meetings and have real time input to the process

Open question and comment period.

- Question When selecting exposure scenarios what timeframe must the risk assessment contemplate? Response There is no definite time period for the risk assessment. EPA risk assessment involves analyzing exposures that can be reasonably anticipated. At some point on the horizon projecting into the future becomes unreasonable but it is impossible to say exactly where the cut-off lies.
- Panelist Comment: The choice of scenarios is crucial to the science Selecting a scenario that will protect the public into the foreseeable future is the most fundamental starting point for technical calculations
- Question We all know that the RSAL is for surface soil but erosion will eventually cause subsurface soil to become surface soil. How does EPA differentiate between the two? Response The risk assessor looks at the means by which future receptors may come in direct contact with contaminants. Therefore, below ground contamination is an incomplete pathway with respect to inhalation and soil ingestion. Insofar as groundwater is determined to be a viable pathway for scenarios being developed by the RSAL Working Group subsurface contamination will have to be examined.

• Question The only adverse effect that has been mentioned is cancer What about non lethal effects and toxicity? Response Radiation standards do take into account non fatal cancers and genetic effects

Issue 2 Uncertainty

Presentation Scenano Parameters: John Till and Kathleen Meyer RAC

Dr John Till discussed parameter uncertainty in terms of the RAC study of soil action levels for Rocky Flats It bears mentioning that scientific opinion is divided on this issue. Even among members of the RAC team there was some debate on the proper way to handle uncertainty versus variability. In the end, the group agreed to make a clear distinction between environmental transport parameters and scenario parameters.

Environmental transport parameters pertain to complex processes (e.g. plutonium uptake by plants) that are not clearly understood. Whenever possible RAC developed probability distributions to estimate this uncertainty. Conversely RAC decided not to treat scenario parameters — lifestyle attributes of the receptor — as uncertain the rationale being that the characteristics of the hypothetical receptor are known. Scenario parameters are variable rather than uncertain. Take breathing rate, for instance. We know the receptor breathes we just don't know how much. For scenario parameters. Dr. Till believes it is preferable to assign point values rather than distributions. To come up with a point estimate one needs to consider the entire range of possible values.

Next, Dr Kathleen Meyer talked about how point values for breathing rate and soil ingestion were derived. Data from various breathing rate studies were aggregated according to activity level (sedentary versus active), resulting in a probability distribution. Having captured the broad range of human variability RAC investigators felt comfortable in choosing the 95th percentile value from that distribution. Whereas breathing rate can be quantified with a high degree of accuracy soil ingestion is quite difficult to measure. Further difficulty may be encountered in attempting to separate intentional from inadvertent soil ingestion. Here, as with breathing rate a distribution was created using data from a number of studies. In this case, however, RAC selected the 50th percentile value because they felt there was a lot of conservatism built into the soil ingestion studies, all of which were conducted over short periods of time during a warm season when people are more likely to be outdoors. The ingestion rates observed during this snapshot in time may not be representative of the amount of soil ingested over the course of a year.

The foregoing is not to suggest which parameters call for central tendency as opposed to high end values. Rather RAC's work suggests a standard methodology that can be used in selecting deterministic parameters. Above all RAC's mindset in describing scenarios was to view them as a benchmark against which to measure the protection of human health, hence, their rationale for assigning upper bound values to some parameters. Had they chosen distributions for all scenario parameters, the RSAL would have been generated by sampling from the high and low ends of the distributions — an approach that is ultimately less conservative and less protective

Discussion of the Presentations

Discussion between the expert panel and the Working Group

- Question Is it equally valid to perform the calculation using distributions for scenario parameters? Response A deterministic approach is not necessarily preferable to a probabilistic approach. The important thing is that the risk assessor be consistent, using either all distributions or all point values for the scenario parameters. Other Panelist Response If the decision is made to use a probabilistic approach for scenario parameters in addition to environmental transport parameters what is variable must be kept separate from what is uncertain. To do so is certainly possible, but one must understand that it is also computationally intensive.
- Comment: One of the more important issues in risk assessment is how to account for
 uncertainty in dose conversion factors but the ICRP (International Commission for
 Radiation Protection) does not want to address it. Helen Grogan has just completed a
 groundbreaking study on uncertainty in risk coefficients which will appear in the May
 issue of Health Physics Hopefully this will prompt similar work on dose conversion
 factors

Open question and comment period

- Question Which risk model is better the ICRP model in which dose is converted to risk by multiplying by a factor or the EPA biokinetic model in which risk is estimated more directly? Response: The ICRP model is simpler. We have a lot of information about the relative doses to the different organs from a given radionuclide intake. Using the dose conversion factors one can work out quite well what is the total dose from a given exposure. Coming from a separate angle, the EPA model is more sophisticated but our knowledge of how radionuclides move through the body is still rudimentary. As more data is collected the EPA model should yield a better estimate of population risk, but for the moment, we are in a time of transition where it remains unclear which model gives the best answer.
- Question What about the relative uncertainty between the two approaches?

 Response There is large uncertainty associated with both of them
- Panelist Comment: The dose methodology used in the past is based on our ability to measure energy deposition in specific tissues and then make an interpretation of the damage done to the body as a whole. From a scientist's perspective this measurability has a distinct advantage. Biokinetic models are more theoretical at this point, in that they are based on observation of how material is distributed through the body. From such observation energy deposition can be predicted and then correlated with risk. I don't think a strictly biokinetic model is ever going to provide all of the answers because there is still the issue of external radiation to deal with
- Comment: Realism should be the goal of the risk assessor. The decision to add conservatism lies with the risk manager. Therefore, it would seem inappropriate to choose a 95th percentile value for breathing rate, for example. Response. Scientifically speaking, RAC probably could have selected a somewhat lower deterministic value for breathing rate. However, the 95th percentile value was selected for breathing rate in the interest of involving the public. We felt using a high end as opposed to a mean value made little difference to the final result, so as scientists we were able to live with that.

- <u>Comment</u>: The ICRP dose conversion factors assume plutonium has a relative biological effectiveness (RBE) of 20. That average value is not protective of the more vulnerable members of the population. Some researchers have suggested assigning a much higher RBE to plutonium. Therefore, it could be argued that the ICRP averaging approach on which radiation standards are based is not particularly conservative.
- Panelist Comment: Over the last couple of days I ve gotten the impression that some experts are reluctant to fit distributions to biological data, such as breathing rate. EPA has much experience with fitting distributions to biological variables. The agency has published guidance on doing so Response. That is fine as long as biological variability is distinguished from uncertainty in the transport model.
- Question What are the RSAL Working Group's annualized values for breathing rate and soil ingestion? Response. The group plans to use a distribution for both of these parameters. Therefore it is difficult to make a direct comparison between RAC's point values and the distributions currently being developed.
- Question With the tremendous uncertainty in dose conversion factors how can the public have confidence in them? Response. As a scientist, I struggle with this myself RAC's approach was simply to use the latest dose conversion factors because they are the most scientifically defensible. I will say though they are unlikely to change dramatically in the near term. It is good for members of the public to appreciate the complexity of this and to appreciate what we really don't know. That's why whenever we make a decision about soil action level uncertainty needs to be taken into account.

On the surface some of the choices RAC made could be perceived as ultra conservative but in fact, we were trying to make choices that would last. This is what we mean when we speak of the robustness of the RSAL.

• Comment: The biological effects of radiation vary from one organ to another and from one radionuclide to another. Yet, dose conversion factors approved for regulatory purposes ignore this and are derived on the simplified assumption that all internal emitters (e.g. plutonium) have the same effect on the body. If the dose conversion factors were adjusted to account for these differences the RSAL could change by an order of magnitude. Response. One of the things we did in our study of the risk factors for plutonium was to not just take the generic RBE of 20 for plutonium but rather to look at it on an organ specific basis and indeed the data for plutonium do support using different mean values than 20 for the different organs of interest. In fact, we came up with probability distributions for that.

Issue 3 Sensitive Parameters

Presentation Parameter Sensitivity Analysis Bob Nininger Kaiser Hill

Dr Robert Nininger of Kaiser Hill explained how the RSAL Working Group analyzed the relative sensitivities of more than a hundred model parameters. The analysis involves varying parameters one at a time over a certain range and observing the resultant change in dose. Sensitive parameters are those of greatest importance in determining the RSAL. The purpose of sensitivity analysis is to identify which parameters deserve the most intensive focus when it

comes to selecting parameter values. Some sensitive parameters may be assigned probability distributions depending on the quality and quantity of data available.

One of the challenges in conducting sensitivity analysis is that there is no absolute standard for determining sensitivity. Parameter sensitivity must be judged relative to other parameters within a given pathway. The majority of parameters had little influence on the outcome. Overall fifteen to twenty parameters registered some sensitivity indicating the need for intensive scrutiny by the Working Group

Presentation Wind Tunnel Studies. Bob Nininger Kaiser Hill

Dr Nininger then presented the results of wind tunnel studies at Rocky Flats. The studies were conducted to determine the increase in mass loading that occurs in the aftermath of a grass fire. A portable wind tunnel was used to generate high winds and collect resuspended soil particles for subsequent analysis. The data indicated a twelve fold increase in erosional potential immediately following the fire. Two and a half months later the burned area still exhibited greater emissions than the unburned area, although the increase was no longer as pronounced. The data also showed that, at a certain wind speed, there is a limited reservoir of material available for resuspension. Given sufficient time for natural weathering to occur that reservoir will be replenished.

The RSAL Working Group believes that the wind tunnel data can be correlated with the site meteorological database in order to build an empirical distribution for mass loading. In doing so the seasonality of the fire would be crucial. A spring fire is assumed to have a lesser impact on resuspension than a fall fire owing to the fact that revegetation following a spring fire would likely be rapid. After a fall fire, the ground could remain denuded for six months or more

Discussion of the Presentations

Discussion between the expert panel and the Working Group

- Comment: The wind tunnel studies are good but it seems to me we should pursue the same experiment in the natural environment without the wind tunnel just looking at a burned area. It wouldn't even have to be at RFETS. You could take any area of similar ecosystem where a burn had occurred and do a pre burn and post burn analysis.

 Response. That would be a different measurement, and the results would be confounded by all the natural effects that are taking place at the time of the measurement.
- Follow on Comment. But that s precisely the answer you want. Response It is the answer we want, but the uncertainty associated with the answer will be higher because of those confounding effects
- Comment: One good source of information might be the rash of fires at DOE sites last summer. In response to the outbreak of fires DOE stepped up their monitoring, so the Working Group might be able to get something applicable to the modeling at Rocky Flats from that.
- Comment: I wonder if the wind tunnel is really an adequate representation of reality

 To be sure it captures horizontal wind movement. However I remember from some

- of the work I did a long time ago on Rocky Flats that it is not the horizontal wind that gets the particulates up into the air but the vertical pounding. With thunderstorms and the like come turbulence and vertical wind currents that flex the residual vegetation. Ifft material up and disturb the soil. That is what can be responsible for a fair amount of the resuspension. Response. That is right. There is turbulence that is not taken into account with the wind tunnel and we still need to look at that factor. Another factor in the environment that bears further study is resuspension due to the vegetation itself. We believe material is being splashed onto leafy surfaces by rainfall and then as the leaf dries and flexes in the wind we get resuspension from the leafy matter. This is one of the chronic resuspension factors that we see at the site.
- Comment: This presentation has stimulated a lot of good thought, and I was just thinking of the dose reconstruction studies at Rocky Flats part of which had to do with investigations of resuspension from the 903 Pad area. Granted the monitoring data was somewhat crude and not without its problems but it presents an interesting opportunity for comparison. When they removed the barrels from the pad and burned the weeds off the surrounding area, we saw a huge increase in air concentrations at the S8 Sampler We could correlate that with wind speeds measured at the time. We are very fortunate that NCAR was doing a special study then and had set up a number of meteorological stations in the area to measure both wind speed and direction. We could use that data to basically calibrate our model. Since they burned the vegetation, the data gives some idea of the relative increase in resuspension after a fire. And the increase was substantial. The S8 concentration before the fire as compared to that seen afterward may provide some additional data to help look at this problem on a larger scale The wind tunnel studies are interesting and worthwhile, but there is a scale problem with them I also agree with the previous comment that failure to capture turbulence is a potential drawback. Response The one important factor that needs to be accounted for with the data from the 903 Pad is soil disturbance. In contaminated areas even the slightest soil disturbance can be detected in samplers potentially confounding the results

Open question and comment period

- Question With the unidirectional airflow inside the wind tunnel I would imagine some
 of the material is being dammed or held back, by grass or other barriers. How are you
 taking account of that? Response That particular factor is not taken into account with
 the wind tunnel. However, the turbulence question would take that into account, and
 that's part of what we're investigating.
- Question Most of the wind tunnel data was collected in the wettest months of the year which would seem to skew the results. How are you taking into account the time of year? Response. Yes the wind tunnel is a snapshot in time. In terms of whether the study was conducted during a wet period or not, the site received less than seasonal amounts of rainfall in the spring of 2000. Most of the precipitation came later in the year in the July and August time frame so the wind tunnel data is not representative of typical spring conditions at the site so much as of a period in time with less than normal rainfall.

- <u>Comment</u>: It would be really valuable if this wind tunnel study were subject to peer review <u>Response</u>. We do want to have the work peer reviewed so that we can better understand its inherent limitations.
- Comment: The wind tunnel study should be peer reviewed by scientists who are not involved in DOE work.

Issue 4 Comparing RESRAD 6 0 to RAC's Work

Presentation Companison Between RESRAD 6.0 and the RAC Study Jim Benetti EPA

Jim Benetti presented the results of a comparison he made between RESRAD 6 0 and the RAC Study. To facilitate the comparison, he ran RESRAD 6 0 deterministically using similar input parameters to those used in the RAC Study. Direct comparison was impossible because he didn't have access to the mass loading inputs selected as part of RAC's Monte Carlo fire simulation. In lieu of them, he started with a baseline mass loading of 26 micrograms per cubic meter, the figure used in the 1996 RSAL calculation, and varied the baseline up to a factor of 200. This is the multiplier RAC assumed in the worst case fire scenario. Interestingly, at that upper end multiplier of 200, the RSAL calculated with RESRAD 6.0 was 23 pCi/g, roughly a third lower than the 35 pCi/g RSAL calculated by RAC. This suggests that RESRAD 6.0 unmodified may actually be more conservative than RESRAD 5.82 as modified by RAC. It also suggests that the real differences between the work the RSAL Working Group is doing currently and RAC's work from a year ago have nothing to do with the model itself but rather with the choice of input parameters.

Discussion of the Presentation

Discussion between the expert panel and the Working Group

- Comment (Art Rood) RAC did not use a single value for mass loading, but a distribution. That complicates matters. Nonetheless the results of your comparison are striking. It is also important to note that the mass loading multiplier is not the only important aspect of the fire. There is also the timing of it. Over the course of 1 000 years, the plutonium inventory in the soil will change. Jim's analysis doesn't account for this and therefore doesn't quite achieve comparability.
- Question (Mr Benetti) I m interested in knowing whether you feel this is a valid way to compare the two approaches Comment (John Till) In order to check the work that RAC has done it is not sufficient to use similar parameters. One must replicate RAC s overall methodology
- <u>Presenter s Comment</u>: Evaluating RAC s work is not the objective of the RSAL Working Group. What we hope to gain from this crude benchmarking is confidence in the Working Group s approach.
- Comment (Art Rood) I think if I sent you all of the mass loading inputs for each Monte Carlo run you should be able to do the comparison. Since the deterministic part of RESRAD 6.0 is unchanged. I m not sure what you would prove. Essentially you would be plugging the same input parameters into the same code.
- Comment: All I m trying to prove with this benchmarking is that the path we as a Working Group have chosen is adequate

white the market a

_ ->200 a se

- <u>Comment (Art Rood)</u> Recognizing the limitations of what you had to work with 1 think the comparison is close
- Comment (Tim Rehder) If in fact we can say that RESRAD 6 0 operates similarly to the way RAC utilized RESRAD 5 82 then the difference lies in how the fire was modeled in 1996 the Agencies did not model for a fire and I agree with John Till that this was a mistake. The question was also raised as to the appropriate frequency of a fire. For purposes of complying with an annual dose limit, it seem reasonable to me to assume the probability of fire equals one. However, when calculating a risk based RSAL over a period of years, the probability of fire becomes crucial because the catastrophic fire would not occur every year. The challenge for the Working Group is to come up with a mass loading distribution. Using site specific data and the wind tunnel studies as a starting point, it should be possible to derive a hypothetical distribution that will adequately address the increase in mass loading after a fire, taking into account both the probability and the seasonality of a fire. As mentioned during the wind tunnel presentation a fall fire is likely to have a more severe impact on mass loading than a spring fire.

The question of how to estimate the probability of a fire is an interesting one. There is historical fire data. However it may be more prudent to assume one tenth of the site burns every year consistent with the RFETS Vegetation Management Plan. This would likely be a conservative assumption since no burning in the contaminated area is planned.

- Comment (John Till) The initiative seems correct. Technically speaking, I m concerned about how one melds all of this information together into a mass loading distribution because you have a number of different issues involved such as the area of the fire and the probability of a fire. If you deal with the dose limit on an annual basis separate from the integrated risk over a 30 year period it is definitely going to give you a different answer and possibly be more restrictive, but we don't know for sure yet. How does the Working Group plan to get an empirical mass loading distribution into RESRAD?

 Response The details aren't completely worked out yet, but our preliminary approach involves melding various factors into a series of annualized multipliers, each with its own assumed probability of occurrence. For instance, a spring fire would result in a different annualized multiplier than a fall fire because recovery would occur more quickly after a spring fire.
- Comment (Art Rood) RAC viewed fire as a discrete event occurring over the course of 1 000 years. Conceptualizing fire as continuous burning, as in the sense of a prescribed burning regimen definitely has some advantages especially in regard to a model like RESRAD that uses annual average mass loading. The question I would be asking is whether continuous burning is reasonable or whether you should assume some kind of catastrophic fire that produces a bump in mass loading at some discrete year in the future. If the latter is the case, then I don't believe folding the effects of the fire into the mass loading distribution will work. If the assumption is a yearly fire of a constant size it may be reasonable to do so
- Comment (Charley Yu) All of the mass loading input into RESRAD is assumed to be a one micron particle size. Perhaps the mass loading input needs to be lowered to

and the state of the state of

1

account for the fact that in reality not all airborne particles in the PM 10 range can be inhaled

Open question and comment period

- Comment: If you assume a catastrophic fire then you should adjust plant ingestion for the fact that the land is no longer available for food production. The idea of looking at smaller fires of limited area has great merit because even after DOE has left, local governments will have fire protection that should extend into the site. I would encourage the Working Group to think about that.
- Question What are the characteristics of the catastrophic fire modeled by RAC?

 Response (Art Rood) The conditions of the fire were based on 60 to 70 years of fire data from the Roosevelt and Arapahoe National Forests and from the Pawnee National Grasslands We considered not only the probability of fire occurring within the site boundaries but also the area of the fire which is basically synonymous with the magnitude. The effect of the fire on the receptor is dependent on the size of the fire as well as the location of the fire relative to the receptor.

General Open Discussion

With time remaining on the agenda, Facilitator Laura Till opened the floor to additional comments or questions the expert panel the Working Group members or the audience participants wished to make

Discussion between the expert panel and the Working Group

- Comment (S Y Chen, Argonne) The issue of what is the appropriate data for developing a mass loading distribution has not been addressed adequately. The Working Group is not focusing on particles of a one micron size. It is this fraction alone that would be appropriate for input to RESRAD. Response (Bob Nininger). The data presented this morning was PM 10 which of course is not the same as one micron particles. To isolate the one micron component from the overall PM 10 would reduce mass loading by a factor of 20 or 30. Particle size distribution data taken from east of the 903 Pad with a 5 stage size fractionating sampler shows that the radioactivity of soils is roughly proportionate to the mass of the soil.
- Comment (John Till) RAC had a lot of trouble with this as well. That s why we took the approach that we did to use the atmospheric monitoring data and the soil concentration data.
- Comment (S Y Chen) I have a data collection concern To run RESRAD 6 0 one needs to have the appropriate data One micron particle size is the data requirement for RESRAD 6 0

Open question and comment period

Question Under a fire scenario the fire occurs on an area of high contamination presumably the 903 Pad. The person getting the maximum inhalation dose resides downwind of the fire on an area of relatively low contamination. Is the person ingesting soil from that immediate area, or soil from the highly contaminated area? Response (John Till)
 My opinion on how it ought to be modeled is as follows. With regard to

inhalation the receptor should be placed downwind of the fire. With regard to soil ingestion, the receptor should be placed upwind, where the fire occurred. This may sound like a contradiction, but it is realistic because the person could move around various parts of the site. I believe that what I we described is the prudent modeling decision.

- Panelist Comment: It is important to recognize that the model assumes the receptor is standing in the middle of a circle of contamination. That is the situation RESRAD simulates. So the model has no way to tell when one puts some other data into it.
- Question Is Argonne developing an off site module for RESRAD? Response (Charley Yu) There is a beta version of RESRAD Offsite that we have been distributing for a couple of years but DOE has not yet formally released it.
- Comment: The data that is being put into RESRAD do not seem to correlate with what the RESRAD developers intended. This problem needs to be explored. Response (Charley Yu). The dose conversion factors published in Federal Guidance Reports are based on one micron particle size. Please understand that there are other dose conversion factors available but those are the ones accepted by the federal government. Therefore the mass loading factor that should be input into RESRAD is the one-micron particle size. Particles much larger than that cannot be inhaled.
- Comment (Kathryn Higley) As Charley said there are different dose conversion factors for different particle sizes. Bigger particles tend to be screened by the filaments in the human nose. Smaller particles below one micron and smaller start behaving as a gas and tend to be exhaled. A common approach in modeling is to assume all respirable particles are one micron. This is considered a conservative assumption and gives a higher estimate of dose than if one were to adjust for those bigger and smaller particles. Particles in the one micron size range are believed to have the greatest adverse effect on human health.
- Question Will the RSAL calculation take into account the fact that resuspension could change in the future due to greater occupancy and greater human activity? Response. The Working Group is proposing to use data from a statewide database as a baseline value for mass loading. That data is based on all of the stations monitoring throughout the State of Colorado. The median mass loading statewide is around 20 micrograms per cubic meter. This is believed to be more conservative than using strictly site data because only a limited scope of activity is currently allowed at the site, whereas statewide data encompasses the full range of human activity.
- Comment. If RESRAD can only accept data for mass loading in the one-micron size range it is a problem with the model not the data being used by the Working Group. The assumption apparently built into RESRAD that only one micron particles can be inhaled is one that does not hold up against reality. It seems appropriate to use one micron dose conversion factors as the best conservative estimate but not to input only a fraction of the respirable particles that are being resuspended. Response. The Working Group plans to treat all particles PM 10 and below as though they were one micron particles as far as dose conversion factors are concerned.
- Question What is the Working Group doing to account for drought and other phenomena such as dust devils or tornadoes? Response The Working Group is considering drought, but in our professional judgment, the severe, fall fire scenario is considered to be the major impact on resuspension. As far as dust devils are

concerned ephemeral events account for a negligible fraction of the dose. It is the dust inhaled under average or chronic conditions throughout the course of a year that poses the real danger to public health.

PART 4 Where Do We Go From Here?

The fourth part of the workshop was intended to allow members of the expert panel the Working Group members and the audience participants to make general statements concerning what they learned at the workshop and any lessons learned that could be applied to the ongoing review of the soil action levels

Facilitator Laura Till explained that each of the expert panel members would have two minutes to present their issues followed by representatives from the Working Group (DOE, Kaiser Hill EPA and CDPHE) The conversation would then turn to members of the audience She advised that possible discussion points would include answering questions such as where do we go from here what are the next steps what would you like to see done next, what are you planning to do next, and what are you taking away from the workshop?

Expert panel members Art Rood Kathleen Meyer and Working Group member Jim Benetti were not able to remain for this final part of the workshop John Till spoke for Art and Kathleen Tim Rehder spoke for Jim

Comments from the Expert Panel

<u>Kathryn Higley</u>: Dr Higley reported that she found the workshop very enlightening. Her comments were made in three categories

- Policy Issues The soil action levels that are based on annual doses can be substantially
 different from those that are based on risk for the same conditions. How can this issue
 be resolved? Maybe the answer is to go back to a cumulative or integrated dose
 concept that better parallels lifetime risk.
- Technical Issues Changing dose conversion factors make the soil levels moving targets. She asked whether as scientists they could make the dose conversion factors more robust and less susceptible to inevitable scientific tweaking. She offered that perhaps moving to probability distribution functions and then picking median or perhaps 95th percentile values for the dose conversion factors will generate numbers that are more stable and less likely to change as the science changes.

The contract of the contract of the

· Jan Marie Constitution

• Communication issues We all need to keep the big picture in mind here. Scientists are always going to argue over the best way to do something, whether to model or to make calculations or whatever. We need to remember that even huge changes in some of the parameters may not substantially change the outcome. The same thing can be said for new and improved models. It is good to look at a newer approach, but don't be surprised or disappointed if the results come back basically the same as your first calculation.

Charley Yu Dr Yu began by stating that he learned much at the workshop He stressed that the numbers you put into the code are important because they are what determine your answer. Thus you need to understand how the code uses parameters and you need to identify the sensitive parameters. If you have uncertainty for some parameters you need to collect better data to feed into the code. Also if you have distributions for parameters it is better to input the distributions into the code and run the full Monte Carlo type of calculations to get the uncertainties the 90th percentile or whatever. This method is better than choosing the 90th or 95th percentile value of the parameter and plugging a single value into the code. He closed by stating that everyone appears to be doing the best job they can but even the best scientists in the world can make mistakes especially when using computer codes. Although RESRAD is very user friendly his experience shows that people make mistakes when they plug numbers into the code. He encouraged those who have not taken a RESRAD training course to do so

John Till Dr Till first stated that he felt satisfied that his previous work is still being discussed and for the respect that it has been shown. He resterated that his team did not modify RESRAD. As others had analogized earlier what they did was use high test gas even rocket fuel to provide inputs to run the model. This is what happens when scientists are given mental freedom to think of how to do something the best they can. This is what science is all about. Even after what he has heard he would not change anything that he did but he would like to do some things more thoroughly. His teams work was to come up with a decision to protect human health to a given radiation dose. They did this to the best of their ability and given the data that they had to work with

He has great respect for the RESRAD code but he also has concern about its potential misuse in decisions of very high importance which this decision is. As one looks at the model it is a very good tool but don't be mislead into thinking that it is very simple and that we know all the answers. This is a very important message for everyone to take home.

He stated that it is important to get site specific data to run with the code. He gave an analogy that it is like buying a copy of legal software to write a will and then using the default values that come with the program. You wouldn't want to write a will unless it was custom driven. For his previous work, he couldn't obtain new data he had to make do with what resources he had available.

In a message to the agencies he stressed that stakeholder involvement is critical. Whatever decision is made about an RSAL is not just an agency decision. It is also a community decision. They should employ the best science.

With respect to independence, he stated that in a decision as important as this the RSAL should be developed by an entity totally independent of the agency that will employ the RSAL. EPA and CDPHE could do this but he still prefers someone totally independent.

Regarding robustness of the final numbers he stated that the only way to deal with uncertainty in dose and risk conversion factors is to employ some type of safety factor. One can do this at the decision level or however one might choose but this is the only way we have of dealing with these things

Finally he stated that he is concerned that three years after his work began we still don't have a soil action level. If he were a local citizen he would be concerned about the resources that have been put into other things, but not this decision.

Comments from the Working Group Members

Steve Gunderson (CDPHE) Mr Gunderson found the workshop to be very informative but he is growing very tired of the RSAL process and is anxious to get things done. He stated that he must defer to the technical experts within the Working Group to determine what parameters to use using the best scientific information and their best scientific judgment. They will be doing something similar to what Dr. Higley did at Johnston Atoll. They will be getting dose based numbers and risk based numbers that have a hundred fold difference. On the risk side they will range from 10⁻⁴ to 10⁻⁶. The Working Group will do the best they can to put numbers on the table and then they will have a policy challenge to make the soil action level decisions and ultimately the cleanup decisions. The full spreadsheet of numbers will be brought to the RFCA Focus Group to discuss.

John Rampe (DOE) Mr Rampe learned a lot over the weekend. What struck him is that reasonable people can disagree on a number of things for a number of different reasons. Explanations include first that we are at the edge of our knowledge. For example, the fire scenario still needs much work. Second people disagree because the RAC team and the current workgroup have been tasked somewhat differently and as a result the numbers from the workgroup will disagree with RACs numbers.

With respect to public process since the first calculations were made they are doing several important things very differently. Public input has led them to looking at things probabilistically. They are considering the fire scenario even if it still needs work. Together we have made progress.

The next thing that will happen is that the workgroup will calculate numbers for a variety of different scenarios and risk levels. Once we have the numbers we will need to understand them and then we can have a public policy discussion from there. His sense is that due to the workshop even though people still disagree we are in good shape to have a fruitful public policy discussion. He is optimistic that with respect to the soil action levels people will ultimately find them reasonably protective.

Bob Nininger (Kaiser Hill). Dr Nininger stated that work still needs to be done on technical issues especially related to mass loading. He pointed out that even when they do come up with numbers that doesn't mean work would stop on mass loading. He finds it frustrating to work in such a short period of time. He further stated that management decisions from the RSALs would be tempered by any new information that they might get. The RFCA process is a review process as well as a process of developing numbers. Numbers derived today may be modified in the future based on new information.

<u>Tim Rehder (EPA).</u> Mr Rehder started out by stating that the more we learn about these questions the more questions we have It is harder to reach an endpoint. Jim Benetti asked him to report that with respect to mass loading, he will go back and talk with his colleagues in Las Vegas and with DOE representatives to determine if there might be information from other sites pertinent to this issue

Mr Rehder stated that Dr Till had mentioned trying to do more monitoring around fires not wind tunnel studies but perhaps PM10 monitors. This is something the working group should look into especially with the burn season coming up and the possibility of controlled fires in Boulder County in areas north of the site. It may make sense to coordinate with officials controlling these fires and put up some monitors to see what they can get out of that. Whatever comes out of these studies could be plugged into the mass loading question

We don't have unlimited time to debate these issues. He is relying on Jim Benetti and Susan Griffin to come up with the Task 3 report that will have results expressed in dose and with a range of risks. He will send the report to EPA Headquarters. Office of Indoor Air and Radiation for technical review. Then we will need to make a management decision. They will use these calculations and consider other factors such as ALARA, protection of surface water quality community acceptance and congressional support, and the whole idea of uncertainty that we have been talking about. Hopefully we can come up with an answer that is at least acceptable to most of us

Comments from the Audience Participants.

Three members of the audience provided comments

Commenter I We have come a long way since the early days at the site. An outstanding area of difficulty has been to come up with reliable data because the site didn't keep very good records. The work from 1996 did not meet with favor in the community because it was done without public knowledge or input. Things have improved since that time. This workshop reflects an attempt to allow the community to understand what is going on. The Working Group meetings are hard to attend. The RFCA Focus Group is a good process since anyone can attend especially asset holders. Asset holders are distinctive from other stakeholders because they hold assets such as drinking water supplies in the area. With the Focus Group in place it is hoped that the process will result in the agencies paying attention to the stakeholders and asset holders.

Where do we go from here? We need another workshop that relates to health effects. Dose conversion factors keep moving around. Why do they move? What are the biasing inputs? Is it politics industry contractor influence budget constraints or what else? I would like to know how it is or why it is that the best scientific minds in the world keep moving these numbers around. The bottom line should be the health safety and welfare of people living near these sites.

Commenter 2 The commenter agrees with the importance of this workshop. What struck the commenter is that in their comments regarding next steps, the agency representatives didn't mention the public and this is the most important part of this process. The commenter doesn't want us to have to come back and do this again. We need the best science to do the job right now. It is important to have the public involved which means no barriers to participation like meetings held in downtown Denver that are very difficult to get to

We didn't need to start at ground zero. The regulators should have started with the RAC report and focused with the community on the areas of disagreement. In retrospect, the regulators have put a huge task on themselves. RAC s science was new and improved showing that we shouldn't look at things like they always have been. We need people like John Till who will look outside the box. This is the challenge for us all

Commenter 3. The commenter began by stating frustration with many years of Rocky Flats involvement. After five or six years we still haven t gotten to first base on what is a safe level to leave the soil for permanent use by the public. There are no rules yet for what we should do with the contaminated soil. Frustration is palpable and time is running out. We are also threatened that the money supply is running out. We need to get off our backsides and do something

Having no further individuals wishing to provide comments. Laura Till thanked everyone for attending, and the workshop adjourned

This summary was prepared through a joint effort by Rocky Flats Citizens Advisory Board staff members Jerry Henderson Ken Korkia Noelle Stenger and Deb Thompson

ATTACHMENT I

Dr Nininger provided the following examples of sensitive parameters for various pathways from most to least sensitive

Soil Ingestion Pathway (Pu 239)

- Soil ingestion
- Indoor time fraction
- Thickness of contamination zone
- Depth of soil mixing layer
- Outdoor time fraction
- Area of contamination zone
- Density of contamination zone
- Precipitation
- Evapotranspiration Coefficient
- Irrigation

Plant Ingestion Pathway (Pu 239)

- Depth of roots
- Contaminated fraction, plant food
- Fruit, vegetable and grain consumption
- Thickness of contaminated zone
- Leafy vegetable contamination
- Distribution coefficient contaminated zone
- Density of contaminated zone
- Precipitation
- Average annual wind speed
- Evapotranspiration coefficient

External Pathway (Pu 239)

- External gamma shielding factor
- Indoor time fraction
- Density of contaminated zone
- Thickness of contamination zone
- Outdoor time fraction
- Area of contaminated zone
- External gamma
- Inhalation
- Plant ingestion
- Meat ingestion

Inhalation Pathway (Pu 239)

- Average annual wind speed
- Inhalation rate
- Mass loading for inhalation
- Indoor dust inhalation shielding factor
- Indoor time fraction
- Depth of soil mixing layer
- Outdoor time fraction
- Area of contamination zone
- Density of contamination zone